Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Usage of Template Mining in Log File Classification

Authors: Péter Marjai; Attila Kiss;

The Usage of Template Mining in Log File Classification

Abstract

The continuing growth of large-scale and complex software systems has led to growing interest in examining the possibilities of using the log files that were created during the runtime of the software. These files can be used for various purposes like error prediction, performance evaluation, learning of usage patterns, improving reliability, and so on. With software systems continuously becoming more and more complicated, the distinction of log files that were generated by different components of the software becomes a new task. The classification of log files is important for several reasons like resource optimization, compliance and auditing, automation and analysis, or understanding the general system health. By classifying log files, organizations can better understand the health and performance of their systems. They can identify patterns, potential security threats, anomalies, errors, and malicious behaviors and storage can also be optimized. In the log files, each line represents a specific event that has occurred. Such events can be identified with the use of template miners that assign a unique ID for each event. In our paper, instead of using the full-sized log files, we change each line to its corresponding event ID and use the resulting smaller file for classification purposes. We use numerous classifying algorithms like Random Forest, K-NN, Ada Boost Classifier, and Decision Tree to assign the files to groups corresponding to their origin types. 75% of the data is used for learning purposes while the remaining 25% is used for testing. We conduct numerous different experiments to verify the effectiveness of our method like evaluating the precision, recall, f-score, and accuracy values and measuring the time it takes to classify the files. Our results yielded that while there is a small fallback in the case of the performance of some of the investigated methods used with the proposed algorithm, it takes significantly less time to classify the log files, which can be profitable, especially in the case of large collections of log files.

Related Organizations
Keywords

Document classification, log file, template miner, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold