Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2015
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Industrial Engineering
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Modified Genetic Algorithm for solving uncertain Constrained Solid Travelling Salesman Problems

Authors: Maity, Samir; id_orcid 0000-0002-7209-0784; Roy, Arindam; Maiti, Manoranjan;

A Modified Genetic Algorithm for solving uncertain Constrained Solid Travelling Salesman Problems

Abstract

In this paper, a Modified Genetic Algorithm (MGA) is developed to solve Constrained Solid Travelling Salesman Problems (CSTSPs) in crisp, fuzzy, random, random-fuzzy, fuzzy-random and bi-random environments. In the proposed MGA, for the first time, a new 'probabilistic selection' technique and a 'comparison crossover' are used along with conventional random mutation. A Solid Travelling Salesman Problem (STSP) is a Travelling Salesman Problem (TSP) in which, at each station, there are a number of conveyances available to travel to another station. Thus STSP is a generalization of classical TSP and CSTSP is a STSP with constraints. In CSTSP, along each route, there may be some risk/discomfort in reaching the destination and the salesman desires to have the total risk/discomfort for the entire tour less than a desired value. Here we model the CSTSP with traveling costs and route risk/discomfort factors as crisp, fuzzy, random, random-fuzzy, fuzzy-random and bi-random in nature. A number of benchmark problems from standard data set, TSPLIB are tested against the existing Genetic Algorithm (with Roulette Wheel Selection (RWS), cyclic crossover and random mutation) and the proposed algorithm and hence the efficiency of the new algorithm is established. In this paper, CSTSPs are illustrated numerically by some empirical data using this algorithm. In each environment, some sensitivity studies due to different risk/discomfort factors and other system parameters are presented.

Keywords

Comparison crossover, Probabilistic selection, Modified Genetic Algorithm (MGA), CSTSP, STSP

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!