Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm

Authors: Xunming Li; Lijin Han; Hui Liu; Weida Wang; Changle Xiang;

Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm

Abstract

Abstract To improve fuel economy and reduce online computation time and microprocessor hardware resources, a real-time implementable energy management strategy for a dual-mode power-split hybrid electric vehicle (HEV) based on an explicit model predictive control (EMPC) method is proposed in this paper. The proposed strategy includes an accurate control-oriented model and a dynamic process coordination control algorithm. The energy management optimal control problem is formulated as a multiparameter quadratic programming optimization problem, and the EMPC control laws are obtained by solving the multiparameter quadratic programming problem offline. The laws are then used online to realize real-time control. A traditional model predictive control (MPC)-based control strategy, DP-based control strategy and rule-based control strategy are considered benchmark strategies for verification of the proposed EMPC-based energy management strategy. The simulation results indicate the EMPC controller has far lower microprocessor hardware costs than the MPC controller but equivalent control performance. As the prediction horizon increases, fuel consumption remains nearly the same between the MPC-based control strategy and EMPC-based control strategy. The consumption time of the MPC-based control strategy increases significantly, while the consumption time of the EMPC-based control strategy is nearly unchanged. Compared with the benchmark algorithms, the elapsed time of the EMPC controller maximum reduced by 97.46%, and the fuel economy improved by 23.37%.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!