Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Psychology ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Psychology & Psychotherapy
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic suicide topic modelling: Deriving population‐specific, psychosocial and time‐sensitive suicide risk variables from Electronic Health Record psychotherapy notes

Authors: Maxwell Levis; Joshua Levy; Vincent Dufort; Carey J. Russ; Brian Shiner;

Dynamic suicide topic modelling: Deriving population‐specific, psychosocial and time‐sensitive suicide risk variables from Electronic Health Record psychotherapy notes

Abstract

AbstractIn the machine learning subfield of natural language processing, a topic model is a type of unsupervised method that is used to uncover abstract topics within a corpus of text. Dynamic topic modelling (DTM) is used for capturing change in these topics over time. The study deploys DTM on corpus of electronic health record psychotherapy notes. This retrospective study examines whether DTM helps distinguish closely matched patients that did and did not die by suicide. Cohort consists of United States Department of Veterans Affairs (VA) patients diagnosed with Posttraumatic Stress Disorder (PTSD) between 2004 and 2013. Each case (those who died by suicide during the year following diagnosis) was matched with five controls (those who remained alive) that shared psychotherapists and had similar suicide risk based on VA's suicide prediction algorithm. Cohort was restricted to patients who received psychotherapy for 9+ months after initial PTSD diagnoses (cases = 77; controls = 362). For cases, psychotherapy notes from diagnosis until death were examined. For controls, psychotherapy notes from diagnosis until matched case's death date were examined. A Python‐based DTM algorithm was utilized. Derived topics identified population‐specific themes, including PTSD, psychotherapy, medication, communication and relationships. Control topics changed significantly more over time than case topics. Topic differences highlighted engagement, expressivity and therapeutic alliance. This study strengthens groundwork for deriving population‐specific, psychosocial and time‐sensitive suicide risk variables.

Keywords

Psychotherapy, Stress Disorders, Post-Traumatic, Suicide, United States Department of Veterans Affairs, Humans, Electronic Health Records, United States, Retrospective Studies, Veterans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!