Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Deep-Learning-Based Proposal to Aid Users in Quantum Computing Programming

Authors: Juan Cruz-Benito; Ismael Faro; Francisco Martín-Fernández; Roberto Therón; Francisco J. García-Peñalvo;

A Deep-Learning-Based Proposal to Aid Users in Quantum Computing Programming

Abstract

New languages like Open QASM and SDKs like QISKit open new horizons for the research and development in the new paradigm of quantum computing. Despite that, they present an evident learning curve that could be hard for regular developers and newcomers in the field of quantum computing. On the other hand, currently there are many ways to build intelligent systems that can learn from humans and processes to build a knowledge corpus and provide a different kind of help to humans in tasks like aiding in decision making processes, recommending multimedia resources, building conversational agents, etc. In this paper we describe a work-in-progress project developed by the IBM Q team that implements an intelligent system based on a deep learning approach that learns how people code using the Open QASM language to later offer help and guidance to the coders by recommending different code sequences, logical steps or even small pieces of code. During the paper, we describe our current approach and first results. They include the use of seq2seq neural networks that effectively learn quantum-code sequences, and which will be tested in real context in the near future to improve the user experience in IBM Q Experience products.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!