Downloads provided by UsageCounts
handle: 10902/11189
Random Linear Network Coding (RLNC) has been shown to be a technique with several benefits, in particular when applied over wireless mesh networks, since it provides robustness against packet losses. On the other hand, Tunable Sparse Network Coding (TSNC) is a promising concept, which leverages a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and computational cost. In addition, it would be difficult to implement, due to the feedback delay. In this work we propose two novel tuning functions with a lower computational cost, which do not highly increase the overhead in terms of the transmission of linear dependent packets compared with RLNC and previous proposals. Furthermore, we also broaden previous studies of TSNC techniques, by means of an extensive simulation campaign carried out using the ns-3 simulator. This brings the possibility of assessing their performance over more realistic scenarios, e.g considering MAC effects and delays. We exploit this implementation to analyze the impact of the feedback sent by the decoder. The results, compared to RLNC, show a reduction of 3.5 times in the number of operations without jeopardizing the network performance, in terms of goodput, even when we consider the delay effect on the feedback sent by the decoder
This work has been supported by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the projects COSAIF, “Connectivity as a Service: Access for the Internet of the Future” (TEC2012-38754-C02-01), and ADVICE (TEC2015-71329-C2-1-R). This work was also financed in part by the TuneSCode project (No. DFF 1335-00125) granted by the Danish Council for Independent Research.
Sparse Matrices, Wireless Networks, TSNC, Random Linear Coding, Simulation
Sparse Matrices, Wireless Networks, TSNC, Random Linear Coding, Simulation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 107 | |
| downloads | 117 |

Views provided by UsageCounts
Downloads provided by UsageCounts