Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Science and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Thermal Science and Engineering Progress
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamics of PCM melting driven by a constant heat flux at the free surface in microgravity

Authors: García Roco, R.; Salgado Sanchez, Pablo; Bello García, Alvaro; Olfe García, Karl Stephan; Rodríguez Otero, Jacobo;

Dynamics of PCM melting driven by a constant heat flux at the free surface in microgravity

Abstract

In this work, we analyze the thermocapillary-enhanced melting of n-octadecane driven by a constant heat flux, applied at the free surface, in microgravity. The material is enclosed in an open rectangular container of dimensions 2L x H, and its solid-to-liquid transition is described using an enthalpy-porosity formulation of the Navier-Stokes equations, assuming laminar and incompressible flow. We study the influence of key governing parameters, including the effect of the heated length Ĩphi is an element of (0, 1], the applied flux phi ⢚ is an element of (0, 8], and the container aspect ratio r is an element of [1.5, 22.8]. Heat transport is analyzed by comparing the thermocapillary-enhanced process with that driven solely by conduction, and quantified by the enhancement ratio G, which simply compares melting times in each scenario. We find that G increases with phi ⢚ and r, and is maximum at an optimal heated length Ĩphi similar or equal to 0.5. Compared to previous works on the melting of n-octadecane in microgravity, the associated enhancement G is more moderate in this system, and oscillatory thermocapillary convection is not observed over the range of parameters explored.

Related Organizations
Keywords

RECTANGULAR CAVITY, Design, metal, Flow, phase-change materials, Melting, Phase change materials, Thermocapillary effect, Containers, TRANSFER ENHANCEMENT, Aeronáutica, THERMAL-ENERGY STORAGE, thermocapillary convection, Microgravity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid