Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SPIRE - Sciences Po ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Article . 2025
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nano Letters
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
Nano Letters
Article
License: STM Policy #29
Data sources: Sygma
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simultaneous Electronic and Thermal Signatures in Pump–Probe Spectroscopy of Semiconductor Nanocrystal Films

Authors: De Bellis, Francesco; Feldman, Matias; Delbono, Ilaria; Royer, Sébastien; Prado, Yoann; Cruguel, Hervé; Lacaze, Emmanuelle; +2 Authors

Simultaneous Electronic and Thermal Signatures in Pump–Probe Spectroscopy of Semiconductor Nanocrystal Films

Abstract

Thermal contributions are typically ignored in optical spectroscopy of semiconductor nanomaterials. However, such considerations are important for an accurate interpretation of spectroscopy measurements. Here, we identify signatures of transient photoinduced heating in optical pump-probe signals of colloidal semiconductor nanocrystal films. We find that lattice heating following excitation above the bandgap or at high fluences leads to a significant temperature-induced transient signal that impacts three aspects of pump-probe measurements: the transient spectra, relaxation kinetics, and spatiotemporally resolved carrier diffusivity. The effects are general across nanocrystal core material, appearing in both CdSe and PbS quantum dot films. This study proposes several methods for distinguishing simultaneous electronic and thermal contributions to transient measurements as well as guidelines for how to avoid misassignments. On the other hand, we discuss the ability to track both electronic and thermal transport as a largely missed opportunity that can be leveraged.

Country
France
Keywords

[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry, thermal transport, relaxation kinetics, pump-probe spectroscopy, Colloidal semiconductor nanocrystals, artifacts, [PHYS.COND] Physics [physics]/Condensed Matter [cond-mat], charge transport

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green