Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Function ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Function Spaces
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Function Spaces
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Function Spaces
Article . 2021
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
https://dx.doi.org/10.60692/jg...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/2m...
Other literature type . 2021
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations

التحليل العددي للنظام الكسري غير الخطي لمعادلات فولتيرا التكاملية التفاضلية
Authors: Pongsakorn Sunthrayuth; Roman Ullah; Adnan Khan; Rasool Shah; Jeevan Kafle; Ibrahim Mahariq; Fahd Jarad;

Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations

Abstract

This paper presents the nonlinear systems of Volterra-type fractional integro-differential equation solutions through a Chebyshev pseudospectral method. The proposed method is based on the Caputo fractional derivative. The results that we get show the accuracy and reliability of the present method. Different nonlinear systems have been solved; the solutions that we get are compared with other methods and the exact solution. Also, from the presented figures, it is easy to conclude that the CPM error converges quickly as compared to other methods. Comparing the exact solution and other techniques reveals that the Chebyshev pseudospectral method has a higher degree of accuracy and converges quickly towards the exact solution. Moreover, it is easy to implement the suggested method for solving fractional-order linear and nonlinear physical problems related to science and engineering.

Keywords

Volterra integral equations, Fractional Order Control, Numerical methods for integral equations, Mathematical analysis, Quantum mechanics, Convergence Analysis of Iterative Methods for Nonlinear Equations, Integro-ordinary differential equations, Higher-Order Methods, Engineering, Differential equation, QA1-939, FOS: Mathematics, Chebyshev filter, Nonlinear Equations, Anomalous Diffusion Modeling and Analysis, Analysis and Design of Fractional Order Control Systems, Numerical Analysis, Physics, Fractional calculus, Power (physics), Applied mathematics, Fractional Derivatives, Reliability (semiconductor), Control and Systems Engineering, Exact solutions in general relativity, Modeling and Simulation, Physical Sciences, Nonlinear system, Fractional Calculus, Chebyshev polynomials, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
gold