Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://journals.uran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://journals.uran.ua/tarp/a...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.15587/2312-...
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemical engineering systems modeling and efficiency analysis of heat and mass exchange

Authors: Yakovleva, Olga; Yakovlev, Yuriy; Toumanskiy, Viktor;

Chemical engineering systems modeling and efficiency analysis of heat and mass exchange

Abstract

The object of research is the chemical engineering system and the heat-mass exchange processes taking place in it. In engineering practice, systems are represented by process flow diagrams. The lack of standardization in the graphical representation of engineering systems does not allow creating a general logic for reading the graphic information and then processing it with the software for analyzing the energy efficiency of the chemical engineering system. The rules for creating flowcharts, symbols for devices, and the chemical engineering system representation technique are developed, allowing any engineering system to be transformed into its topological representation. To combine the two branches of different networks and organize the heat and mass exchange processes in the system are elements intended for heat and energy exchange between networks with streams pair interaction. Mathematical models of heat and mass exchange networks for chemical industry have been developed, and energy efficiency and mass transfer efficiency criteria have been introduced. This allows to: construct a software environment that generates a system model based on its topological representation; analyze various options for implementing the process flow diagram for finished products production; synthesize the optimal, energy-saving production option. A numerical experiment was performed using a modeling software developed by the German company NETWORK SOLUTION DEVELOPMENT CO and transferred for testing. The model adequacy to the real engineering system approves the comparison of the model parameters and the parameters of the design regime of the urea production synthesis unit. The error in determining the mass flow rates doesn’t not exceed 2.4 % on branches, and the temperatures values at the nodes are strictly correspond to the technological regulations. Preliminary analysis indicates the possibility of improving the energy efficiency of production due to the integration of heat streams within the production cycle and the structural and parametric optimization of the engineering system.

Keywords

UDC 66.011, виробнича схема; топологічне і математичне моделювання хіміко-технологічних систем; ефективність тепломасообміна, process flow diagram; topological modeling; modeling techniques; heat and mass exchange efficiency; chemical engineering systems, производственная схема; топологическое и математическое моделирование химико-технологических систем; эффективность тепломассообмена

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities