Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational Optimi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational Optimization and Applications
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximate bregman proximal gradient algorithm for relatively smooth nonconvex optimization

Approximate Bregman proximal gradient algorithm for relatively smooth nonconvex optimization
Authors: Shota Takahashi; Akiko Takeda;

Approximate bregman proximal gradient algorithm for relatively smooth nonconvex optimization

Abstract

Abstract In this paper, we propose the approximate Bregman proximal gradient algorithm (ABPG) for solving composite nonconvex optimization problems. ABPG employs a new distance that approximates the Bregman distance, making the subproblem of ABPG simpler to solve compared to existing Bregman-type algorithms. The subproblem of ABPG is often expressed in a closed form. Similarly to existing Bregman-type algorithms, ABPG does not require the global Lipschitz continuity for the gradient of the smooth part. Instead, assuming the smooth adaptable property, we establish the global subsequential convergence under standard assumptions. Additionally, assuming that the Kurdyka–Łojasiewicz property holds, we prove the global convergence for a special case. Our numerical experiments on the $$\ell _p$$ ℓ p regularized least squares problem, the $$\ell _p$$ ℓ p loss problem, and the nonnegative linear system show that ABPG outperforms existing algorithms especially when the gradient of the smooth part is not globally Lipschitz or even locally Lipschitz continuous.

Related Organizations
Keywords

nonnegative linear system, Kullback-Leibler divergence, \(\ell_p\) loss problem, Kurdyka-Łojasiewicz property, composite nonconvex nonsmooth optimization, Nonconvex programming, global optimization, \(\ell_p\) regularized least squares problem, Bregman proximal gradient algorithms, 90C26, 49M37, 65K05, Numerical mathematical programming methods, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid