
Abstract In this paper, an image segmentation method is proposed that integrates fuzzy 2-partition into Yen’s maximum correlation thresholding method. A fuzzy 2-partition of the image is obtained by transforming the image into fuzzy domain by means of two parameterized membership functions. Fuzzy correlation is defined to measure the appropriateness of the fuzzy 2-partition. An ideal threshold is calculated from the optimal membership functions’ parameters, which make the corresponding fuzzy 2-partition have maximum fuzzy correlation. In the process of searching the optimal parameters of membership functions, a fast recursive algorithm is presented in order to reduce the computation complexity. Experimental results on synthetic image, brain magnetic resonance (MR) images and casting images show that the proposed method has a satisfactory performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
