Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2010
Data sources: IRIS Cnr
https://doi.org/10.1109/pdmc-h...
Article . 2010 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Conference object . 2010
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallel Computing Algorithms for Reverse-Engineering and Analysis of Genome-Wide Gene Regulatory Networks from Gene Expression Profiles

Authors: Vincenzo Belcastro; Diego Di Bernardo; Francesco Gregoretti; Gennaro Oliva;

Parallel Computing Algorithms for Reverse-Engineering and Analysis of Genome-Wide Gene Regulatory Networks from Gene Expression Profiles

Abstract

A Gene Regulatory Network links pairs of genes through an edge if they physically or functionally interact. "Reverse engineering" a gene regulatory network means to infer the edges between genes from the available experimental data. Transcriptional responses (i.e. gene expression profiles obtained through microarray experiments) are often used to reverse-engineer a network of genes. Reverse-engineering consists in analyzing transcriptional responses to a set of treatments and adding an edge between genes if their expressions show a coordinated behavior on a subset of the treatments, according to some underlying model of gene regulation. Mammalian cells contain tens of thousands of genes, and it is necessary to analyze hundreds of transcriptional responses in order to have acceptable statistical evidence of interactions between genes. There currently exist several ready-to-use software packages able to infer gene networks, but few can be used to infer large-size networks from thousands of transcriptional responses as the dimension of the problem leads to high computational costs and memory requirements. We propose to exploit parallel computing techniques to overcome this problem. In this work, we designed and developed a parallel computing algorithm to reverse engineer large-scale gene regulatory networks from tens of thousands of gene expression profiles. The algorithm is based on computing pair-wise Mutual Information between each gene-pair.We successfully tested it to infer the Mus Musculus (mouse) gene regulatory network in liver from 312 expression profiles collected from a public Internet repository. Each profile measures the expression of 45,101 genes (more specifically, transcripts). We analyzed all of the possible gene-pairs for a total amount of about 10^9 identifying about 6 · 10^7 edges. We used a hierarchical clustering algorithm to discover communities within the gene network, and found a modular structure that highlights genes involved in the same biological functions.

Keywords

Parallel computing, Clustering algorithm, Gene regulatory network, Reverse engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!