
This note considers the distributed optimization problem on directed graphs with nonconvex local objective functions and the unknown network connectivity. A new adaptive algorithm is proposed to minimize a differentiable global objective function. By introducing dynamic coupling gains and updating the coupling gains using relative information of system states, the nonconvexityof local objective functions, unknown network connectivity and the uncertain dynamics caused by locally Lipschitz gradients are tackled concurrently. Consequently, the global asymptotic convergence is established when the global objective function is strongly convex and the gradients of local objective functions are only locally Lipschitz. When the communication graph is stronglyconnected and weight-balanced, the algorithm is independent of any global information. Then, the algorithm is naturally extended to unbalanced directed graphs by using the left eigenvector of the Laplacian matrix associated with the zero eigenvalue. Several numerical simulations are presented to verify the results.
Consensus control, distributed convex optimization, Adaptive control
Consensus control, distributed convex optimization, Adaptive control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 149 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
