Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Communicationsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Communications
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Communications
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Communications
Article . 2021
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks

Authors: Yanling Ren; Zhibin Xie; Zhenfeng Ding; Xiyuan Sun; Jie Xia; Yubo Tian;

Computation offloading game in multiple unmanned aerial vehicle‐enabled mobile edge computing networks

Abstract

Abstract Because of extreme sensitivity to time and energy consumption, many computation‐ and data‐intensive tasks are difficult to implement on mobile terminals and cannot meet the needs of the rapid development of mobile networks. To solve this problem, mobile edge computing (MEC) appears to be a promising solution. In this study, we propose two offloading schemes in the multiple unmanned aerial vehicles (UAVs) enabled MEC network. Their optimisation goals are to minimise the global computing time and energy consumption of all UAVs, respectively. Different from previous research, the UAV can perform tasks locally or offload an appropriate percentage to the desired MEC server in the two proposed schemes. In order to get the minimum global computing time, we prove the existence condition and obtain the optimal offloading proportion. In addition, in order to minimise global energy consumption, we also obtain the optimal offloading proportion and present the optimal transmission power through solving Karush–Kuhn–Tucker conditions. Finally, because UAVs are selfish, we adopt the game theory to get optimal solutions of the proposed offloading strategies. Numerical results verify that the proposed schemes can effectively decrease the global computing time and energy consumption, especially for a large number of UAVs.

Related Organizations
Keywords

Aerospace control, Mobile robots, Internet software, Telecommunication, Optimisation techniques, Mobile radio systems, TK5101-6720

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
gold