Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Electronic Materials
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly Efficient Red-Emitting OLEDs Prepared from Nona-Coordinated Europium(III) Complexes

Authors: Rashid Ilmi; Xiaoyang Xia; José D. L. Dutra; Gabriel Silva Santos; Liang Zhou; Wai-Yeung Wong; Paul R. Raithby; +1 Authors

Highly Efficient Red-Emitting OLEDs Prepared from Nona-Coordinated Europium(III) Complexes

Abstract

We have designed and synthesized three nona-coordinated organoeuropium complexes (OEuCs) with the general formula [Eu(btfa) 3(FurTerPy)] (Eu1), [Eu(btfa) 3(ThioTerPy)] (Eu2), and [Eu(btfa) 3(NapTerPy)] (Eu3) by employing a primary 4,4,4-trifluoro-1-phenyl-1,3-butanedione (btfa) antenna ligand and three functionalized 2,2′:6′,2″-terpyridine (TerPy) ligands bearing different electron-donating groups at the 4′ position, namely, FurTerPy = 4′-(furan-2-yl)-2,2′:6′,2″-terpyridine; ThioTerPy = 4′-(thiophen-2-yl)-2,2′:6′,2″-terpyridine; and NapTerPy = 4′-(naphthalen-1-yl)-2,2′:6′,2″-terpyridine. The detailed photophysical properties of Eu1, Eu2, and Eu3 were analyzed using both experimental and computational methods. By analyzing the experimental and time-dependent density functional theory (TD-DFT) data in conjunction with the Lanthanide Luminescence Software Package (LUMPAC), we further elucidated the energy transfer processes in the OEuCs. Finally, the complexes were tested as the emitting layer (EML) in a multilayered device to fabricate red organic light-emitting diodes (R-OLED). Through optimization and device engineering, we have achieved a remarkable electroluminescence (EL) performance of maximum current efficiency (η c) = 12.32 cd/A, maximum power efficiency (η p) = 11.73 lm/W, and maximum external quantum efficiency (EQE max) = 10.20%, respectively, for the Eu3-based double-EML OLED. To the best of our knowledge, this is the highest reported overall EL performance among the OEuCs until now.

Keywords

Carrier trapping, energy transfer mechanism, red electroluminescence, /dk/atira/pure/subjectarea/asjc/2500/2504; name=Electronic, Optical and Magnetic Materials, europium(III), Europium(III), terpyridine, Red electroluminescence, /dk/atira/pure/subjectarea/asjc/2500/2505; name=Materials Chemistry, Energy transfer mechanism, /dk/atira/pure/subjectarea/asjc/1600/1603; name=Electrochemistry, 4,4,4-trifluoro-1-phenyl-1,3-butanedione, Terpyridine, Förster energy transfer, carrier trapping

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green