
handle: 2183/20937
[Abstract] This study uses genetic algorithms to formulate and develop land use plans. The restrictions to be imposed and the variables to be optimized are selected based on current local and national legal rules and experts’ criteria. Other considerations can easily be incorporated in this approach. Two optimization criteria are applied: land suitability and the shape-regularity of the resulting land use patches. We consider the existing plots as the minimum units for land use allocation. As the number of affected plots can be large, the algorithm execution time is potentially high. The work thus focuses on implementing and analyzing different parallel paradigms: multi-core parallelism, cluster parallelism and the combination of both. Some tests were performed that show the suitability of genetic algorithms to land use planning problems.
Xunta de Galicia; 08SIN011291PR
Xunta de Galicia; 2010/06
Xunta de Galicia; 2010/28
Parallel programming, Distributed programming, Clusters of multi-core systems, Genetic algorithms, Land use planning, GIS
Parallel programming, Distributed programming, Clusters of multi-core systems, Genetic algorithms, Land use planning, GIS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 93 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
