Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-CEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Conference object . 2013
Data sources: HAL-CEA
https://doi.org/10.1109/icassp...
Article . 2013 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recursive Least Squares algorithm dedicated to early recognition of explosive compounds thanks to multi-technology sensors

Authors: Mayoue, Aurélien; Martin, A.; Lebrun, Guillaume; Larue, Antony;

Recursive Least Squares algorithm dedicated to early recognition of explosive compounds thanks to multi-technology sensors

Abstract

In this paper, a novel gas identification approach based on the Recursive Least Squares (RLS) algorithm is proposed. We detail some adaptations of RLS to be applied to a sensor matrix of several technologies in optimal conditions. The low complexity of the algorithm and its ability to process online samples from multi-sensor make the real-time identification of volatile compounds possible. The effectiveness of this approach to early detect and recognize explosive compounds in the air has been successfully demonstrated on an experimentally obtained dataset.

Country
France
Keywords

Signal processing, Multi-dimensional analysis, [CHIM.ANAL] Chemical Sciences/Analytical chemistry, Real-time identification, Explosive compounds, Electronic nose, Recursive least square (RLS), statistical analysis, Pattern recognition, [CHIM.CHEM] Chemical Sciences/Cheminformatics, Volatile organic compounds, Recursive least squares algorithms, Sensor, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing, [STAT.ME] Statistics [stat]/Methodology [stat.ME], Spectrum analysis, classification, Volatile compounds, Optimal conditions, Explosives, Explosive detection, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green