
Multicolor Fluorescence In-Situ Hybridization (M-FISH) is an imaging technique for rapid detection of chromosomal abnormalities, where the segmentation of chromosomes has been a challenge. Multi-channel information of M-FISH images can be used in a segmentation algorithm to exploit the correlated information across channels for better image segmentation. In addition, the neighboring pixels share similar characteristics, so this spatial information can be further utilized to improve the robustness of the algorithm to the noise. Motivated by this fact, in this paper we proposed an improved Fuzzy C-means (FCM) clustering algorithm to overcome the problems of conventional FCM such as the sensitivity to noise by incorporating both spatial and spectral information. The experimental results on both simulated and real M-FISH images have shown that our proposed method can result in higher segmentation accuracy and lower false ratio than both conventional FCM and the improved adaptive FCM (IAFCM) we recently proposed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
