Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Segmentation of Multicolor Fluorescence In-Situ Hybridization (M-FISH) image using an improved Fuzzy C-means clustering algorithm while incorporating both spatial and spectral information

Authors: Jingyao Li; Dongdong Lin; Yu-Ping Wang 0002;

Segmentation of Multicolor Fluorescence In-Situ Hybridization (M-FISH) image using an improved Fuzzy C-means clustering algorithm while incorporating both spatial and spectral information

Abstract

Multicolor Fluorescence In-Situ Hybridization (M-FISH) is an imaging technique for rapid detection of chromosomal abnormalities, where the segmentation of chromosomes has been a challenge. Multi-channel information of M-FISH images can be used in a segmentation algorithm to exploit the correlated information across channels for better image segmentation. In addition, the neighboring pixels share similar characteristics, so this spatial information can be further utilized to improve the robustness of the algorithm to the noise. Motivated by this fact, in this paper we proposed an improved Fuzzy C-means (FCM) clustering algorithm to overcome the problems of conventional FCM such as the sensitivity to noise by incorporating both spatial and spectral information. The experimental results on both simulated and real M-FISH images have shown that our proposed method can result in higher segmentation accuracy and lower false ratio than both conventional FCM and the improved adaptive FCM (IAFCM) we recently proposed.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!