Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Machine Learning and Cybernetics
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm

Authors: Mohamed A. Tawhid; Abdelmonem M. Ibrahim;

Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm

Abstract

The principle of any approach for solving feature selection problem is to find a subset of the original features. Since finding a minimal subset of the features is an NP-hard problem, it is necessary to develop and propose practical and efficient heuristic algorithms. The whale optimization algorithm is a recently developed nature-inspired meta-heuristic optimization algorithm that imitates the hunting behavior of humpback whales to solve continuous optimization problems. In this paper, we propose a novel binary whale optimization algorithm (BWOA) to solve feature selection problem. BWOA is especially desirable and appealing for feature selection problem whenever there is no heuristic information that can lead the search to the optimal minimal subset. Nonetheless, whales can find the best features as they hunt the prey. Rough set theory (RST) is one of the effective algorithms for feature selection. We use RST with BWOA as the first experiment, and in the second experiment, we use a wrapper approach with BWOA on three different classifiers for feature selection. Also, we verify the performance and the effectiveness of the proposed algorithm by performing our experiments using 32 datasets from the UCI machine learning repository and comparing the proposed algorithm with some powerful existing algorithms in the literature. Furthermore, we employ two nonparametric statistical tests, Wilcoxon Signed-Rank test, and Friedman test, at 5% significance level. Our results show that the proposed algorithm can provide an efficient tool to find a minimal subset of the features.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!