
The principle of any approach for solving feature selection problem is to find a subset of the original features. Since finding a minimal subset of the features is an NP-hard problem, it is necessary to develop and propose practical and efficient heuristic algorithms. The whale optimization algorithm is a recently developed nature-inspired meta-heuristic optimization algorithm that imitates the hunting behavior of humpback whales to solve continuous optimization problems. In this paper, we propose a novel binary whale optimization algorithm (BWOA) to solve feature selection problem. BWOA is especially desirable and appealing for feature selection problem whenever there is no heuristic information that can lead the search to the optimal minimal subset. Nonetheless, whales can find the best features as they hunt the prey. Rough set theory (RST) is one of the effective algorithms for feature selection. We use RST with BWOA as the first experiment, and in the second experiment, we use a wrapper approach with BWOA on three different classifiers for feature selection. Also, we verify the performance and the effectiveness of the proposed algorithm by performing our experiments using 32 datasets from the UCI machine learning repository and comparing the proposed algorithm with some powerful existing algorithms in the literature. Furthermore, we employ two nonparametric statistical tests, Wilcoxon Signed-Rank test, and Friedman test, at 5% significance level. Our results show that the proposed algorithm can provide an efficient tool to find a minimal subset of the features.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
