
Zusammenfassung Hintergrund Gerade in der Frühphase einer Pandemie ist es schwierig, verlässliche Zahlen über deren Ausbreitung zu erhalten. Die derzeitige COVID-19-Pandemie und das damit verbundene umfassende, aber nicht vollständige Datenmonitoring bieten die Möglichkeit, die Dunkelziffer der nicht erfassten Fälle zu schätzen. Ziel Vorstellung eines einfachen mathematischen Modells, welches eine frühzeitige Abschätzung der Zahl nichtregistrierter Fälle (Dunkelziffer) ermöglicht. Material und Methoden Es werden die Prävalenzen der gemeldeten Infektionen in verschiedenen Altersgruppen mit Kennzahlen der altersabhängigen Kontaktzahlen kombiniert. Daraus wird für jede Altersgruppe eine korrigierte Prävalenz abgeleitet, mit der dann die Dunkelziffer geschätzt werden kann. Ergebnisse Unser Modell berechnet für Mitte April 2020 in Deutschland insgesamt 2,8-mal so viele Infektionen wie die Zahl der registrierten Infektionen (Fälle). Für Italien ergibt sich Mitte April 2020 ein Faktor von 8,3. Die daraus abgeleiteten Fallsterblichkeiten betragen 0,98 % für Deutschland und 1,51 % für Italien, welche deutlich näher zusammenliegen als die rein aus den zu dem Zeitpunkt vorhandenen Meldezahlen abgeleiteten Fallsterblichkeiten von 2,7 % und 12,6 %. Diskussion Die aus dem Modell abgeleitete Dunkelziffer kann die unterschiedlichen Beobachtungen in den Fallsterblichkeiten und der Zustände in der Frühphase der COVID-19-Pandemie in Deutschland und Italien zu einem großen Teil erklären. Das Modell ist einfach, schnell und robust implementierbar und kann gut darauf reagieren, wenn die Meldezahlen hinsichtlich der Altersstruktur nicht repräsentativ für die Bevölkerung sind. Wir empfehlen, dieses Modell für eine effiziente und frühzeitige Schätzung nichtgemeldeter Fallzahlen bei zukünftigen Epidemien und Pandemien in Betracht zu ziehen.
Leitthema, Fallsterblichkeit ; COVID-19 ; Italy/epidemiology [MeSH] ; Leitthema ; Humans [MeSH] ; Prävalenzschätzung ; Case fatality rate ; Germany/epidemiology [MeSH] ; Pandemics [MeSH] ; COVID-19/mortality [MeSH] ; Epidemic modelling ; Models, Statistical [MeSH] ; Prevalence estimation ; COVID-19/epidemiology [MeSH] ; Epidemiologische Modellierung
Leitthema, Fallsterblichkeit ; COVID-19 ; Italy/epidemiology [MeSH] ; Leitthema ; Humans [MeSH] ; Prävalenzschätzung ; Case fatality rate ; Germany/epidemiology [MeSH] ; Pandemics [MeSH] ; COVID-19/mortality [MeSH] ; Epidemic modelling ; Models, Statistical [MeSH] ; Prevalence estimation ; COVID-19/epidemiology [MeSH] ; Epidemiologische Modellierung
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
