Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL-Rennes 1arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Rennes 1
Conference object . 2014
Data sources: HAL-Rennes 1
https://doi.org/10.1201/978100...
Part of book or chapter of book . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computation of Polarized Subsurface BRDF for Rendering

Authors: Collin, Charly; Pattanaik, Sumanta; Likamwa, Patrick; Bouatouch, Kadi;

Computation of Polarized Subsurface BRDF for Rendering

Abstract

Interest in polarization properties of the rendered materials is growing, but so far discussions on polarization have been restricted only to surface reflection, and the reflection due to subsurface scattering is assumed to be unpolarized. Findings from other field (e.g. optics and atmospheric science) show that volumetric interaction of light can contribute to polarization. So we investigated the polarized nature of the radiance field due to subsurface scattering as a function of the thickness of the material layer for various types of materials. Though our computations shows negligible polarization for material layers of high thickness, thin layered materials show significant degree of polarization. That means polarization cannot be ignored for subsurface component of reflection from painted surfaces (particularly painted metal surfaces) or from coated materials. In this paper we employ the vector radiative transfer equation (VRTE), which is the polarized version of the radiative transfer equation inside the material. We use a discrete ordinate based method to solve the VRTE and compute the polarized radiance field at the surface of the material layer. We generate the polarimetric BRDF from the solutions of the VRTE for incident irradiance with different polarizations. We validate our VRTE solution against a benchmark and demonstrate our results through renderings using the computed BRDF.

Keywords

I.3.0 [computer graphics]: General, [INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR], Reflectance, I.4.1 [image processing and computer vision]: Digitalization and capture

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!