Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bone Motion Analysis from Dynamic MRI: Acquisition and Tracking

Authors: Gilles, Benjamin; Perrin, Rosalind; Magnenat-Thalmann, Nadia; Vallée, Jean-Paul;

Bone Motion Analysis from Dynamic MRI: Acquisition and Tracking

Abstract

For diagnosis, preoperative planning and postoperative guides, an accurate estimate of joint kinematics is required. It is important to acquire joint motion actively with real-time protocols.We bring together MRI developments and new image processing methods in order to automatically extract active bone kinematics from multi-slice real-time dynamic MRI. We introduce a tracking algorithm based on 2D/3D registration and a procedure to validate the technique by using both dynamic and sequential MRI, providing a gold standard bone position measurement.We present our technique for optimizing jointly the tracking method and the acquisition protocol to overcome the trade-off in acquisition time and tracking accuracy. As a case study, we apply this methodology on a human hip joint.The final protocol (bFFE, TR/TE 3.5/1.1 ms, Flip angle 80 degrees , pixel size 4.7 x 2.6 mm, partial Fourier reduction factor of 0.65 in read direction, SENSE acceleration factor of 2, frame rate = 6.7 frames/s) provides sufficient morphological data for bone tracking to be carried out with an accuracy of 3 degrees in terms of joint angle.

Country
Switzerland
Related Organizations
Keywords

Magnetic Resonance Imaging / methods, Imaging, Three-Dimensional / methods, Sensitivity and Specificity, Pelvic Bones / anatomy & histology, Imaging, Three-Dimensional, Range of Motion, Articular / physiology, Image Interpretation, Computer-Assisted, Humans, Image Enhancement / methods, Femur, Range of Motion, Articular, Pelvic Bones, Image Interpretation, Computer-Assisted / methods, Hip Joint / physiology, Femur / physiology, 616.0757, Reproducibility of Results, Pelvic Bones / physiology, Image Enhancement, Magnetic Resonance Imaging, Hip Joint / anatomy & histology, Femur / anatomy & histology, Hip Joint, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze