Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radiation Measurements
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theoretical study of pressure effects on fission fragment track registration lengths in apatite

Authors: Cruz, S.A.; Chadderton, Lewis;

Theoretical study of pressure effects on fission fragment track registration lengths in apatite

Abstract

Abstract Pressure effects on the track lengths of 235 U fission fragments in an idealized ‘random’ fluoroapatite target are theoretically investigated by estimating changes in stopping power cross section due to pressure-induced changes in the electronic structure of the target material. Changes in the electronic density and mean ionization energy of compressed target atoms are evaluated through the Thomas–Fermi–Dirac–Weizsacker (TFDW) energy density functional for an atom confined within a spherical cavity whose radius is associated with the pressure exerted on the material. As a first approximation, chemical binding effects are neglected, treating the stopping contribution from target constituent atoms according to the material stoichiometry and assuming Bragg's additivity rule. Also, an approximate equation of state for apatite is used to estimate the pressure-induced changes in bulk density. Range calculations are performed for slow neutron induced fission of U 235 with a light particle ( A = 96 ) at 93.1 MeV and a heavy particle ( A = 137 ) at 61.4 Mev at normal pressure using SRIM and compared with those obtained in this study for high pressures (2 GPa, 10 GPa and 105 GPa).

Keywords

Electronic structure, Ionization, Chemical binding, Electronic density, Fission fragments, Pressure effects, Fission products Apatite, Stoichiometry, Track length, Fluorine compounds, Keywords: Approximation theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green