Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cvpr46...
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient-based Algorithms for Machine Teaching

Authors: Pei Wang; Kabir Nagrecha; Nuno Vasconcelos;

Gradient-based Algorithms for Machine Teaching

Abstract

The problem of machine teaching is considered. A new formulation is proposed under the assumption of an optimal student, where optimality is defined in the usual machine learning sense of empirical risk minimization. This is a sensible assumption for machine learning students and for human students in crowdsourcing platforms, who tend to perform at least as well as machine learning systems. It is shown that, if allowed unbounded effort, the optimal student always learns the optimal predictor for a classification task. Hence, the role of the optimal teacher is to select the teaching set that minimizes student effort. This is formulated as a problem of functional optimization where, at each teaching iteration, the teacher seeks to align the steepest descent directions of the risk of (1) the teaching set and (2) entire example population. The optimal teacher, denoted MaxGrad, is then shown to maximize the gradient of the risk on the set of new examples selected per iteration. MaxGrad teaching algorithms are finally provided for both binary and multiclass tasks, and shown to have some similarities with boosting algorithms. Experimental evaluations demonstrate the effectiveness of MaxGrad, which outperforms previous algorithms on the classification task, for both machine learning and human students from MTurk, by a substantial margin.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!