
We discuss the design and implementation of new highly-scalable distributed-memory parallel algorithms for two prototypical graph problems, edge-weighted matching and distance-1 vertex coloring. Graph algorithms in general have low concurrency, poor data locality, and high ratio of data access to computation costs, making it challenging to achieve scalability on massively parallel machines. We overcome this challenge by employing a variety of techniques, including speculation and iteration, optimized communication, and randomization. We present preliminary results on weak and strong scalability studies conducted on an IBM Blue Gene/P machine employing up to tens of thousands of processors. The results show that the algorithms hold strong potential for computing at petascale.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
