Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Climate
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Climate
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variability and Drivers of Ocean Temperature Extremes in a Warming Western Boundary Current

Authors: Li, J; Roughan, M; Kerry, C;

Variability and Drivers of Ocean Temperature Extremes in a Warming Western Boundary Current

Abstract

Abstract Western boundary current (WBC) extensions such as the East Australian Current (EAC) southern extension are warming 2–3 times faster than the global average. However, there are nuances in the spatial and temporal variability of the warming that are not well resolved in climate models. In addition, the physical drivers of ocean heat content (OHC) extremes are not well understood. Here, using a high-resolution ocean model run for multiple decades, we show nonuniform warming trends in OHC in the EAC, with strong positive trends in the southern extension region (∼36°–38°S) but negative OHC trends equatorward of 33°S. The OHC variability in the EAC is associated with the formation of anticyclonic eddies, which is modulated by transport ∼880 km upstream (EAC mode) and the westward propagation of Rossby waves (eddy mode). Diagnosing the drivers of temperature extremes has implications for predictability both in the EAC and in WBCs more broadly, where ocean warming is already having considerable ecological impacts.

Country
Australia
Related Organizations
Keywords

13 Climate Action, 550, anzsrc-for: 0405 Oceanography, anzsrc-for: 3702 Climate change science, 37 Earth Sciences, anzsrc-for: 37 Earth Sciences, anzsrc-for: 3708 Oceanography, 551, anzsrc-for: 0401 Atmospheric Sciences, 3708 Oceanography, anzsrc-for: 0909 Geomatic Engineering, anzsrc-for: 3701 Atmospheric sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
bronze