
doi: 10.1093/bib/bbad225
pmid: 37337745
Abstract RNAs can interact with other molecules in their environment, such as ions, proteins or other RNAs, to form complexes with important biological roles. The prediction of the structure of these complexes is therefore an important issue and a difficult task. We are interested in RNA complexes composed of several (more than two) interacting RNAs. We show how available knowledge on the considered RNAs can help predict their secondary structure. We propose an interactive tool for the prediction of RNA complexes, called C-RCPRed, that considers user knowledge and probing data (which can be generated experimentally or artificially). C-RCPred is based on a multi-objective optimization algorithm. Through an extensive benchmarking procedure, which includes state-of-the-art methods, we show the efficiency of the multi-objective approach and the positive impact of considering user knowledge and probing data on the prediction results. C-RCPred is freely available as an open-source program and web server on the EvryRNA website (https://evryrna.ibisc.univ-evry.fr).
RNA structure prediction, Sequence Analysis, RNA, RNA, Nucleic Acid Conformation, Multi-objective algorithm, Shape data, RNA complexes, [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC], Software, Algorithms, Protein Structure, Secondary, [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
RNA structure prediction, Sequence Analysis, RNA, RNA, Nucleic Acid Conformation, Multi-objective algorithm, Shape data, RNA complexes, [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC], Software, Algorithms, Protein Structure, Secondary, [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
