Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Healtharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Digital Health
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MSPO: A machine learning hyperparameter optimization method for enhanced breast cancer image classification

Authors: Haonan Li; Vijay Govindarajan; Tan Fong Ang; Zaffar Ahmed Shaikh; Amel Ksibi; Yen-Lin Chen; Chin Soon Ku; +4 Authors

MSPO: A machine learning hyperparameter optimization method for enhanced breast cancer image classification

Abstract

As one of the major threats to women's health worldwide, breast cancer requires early diagnosis and accurate classification, since they are key to optimizing therapeutic interventions and ensuring precise prognosis. Recently, deep learning has demonstrated notable advantages in breast cancer image classification. However, their performance heavily relies on the proper configuration of hyperparameters. To overcome the inefficiencies and weaknesses of conventional hyperparameter optimization methods, like limited effectiveness and vulnerability to premature convergence, this research proposes a Multi-Strategy Parrot Optimizer (MSPO) and applies it to breast cancer image classification tasks. Based on the original Parrot Optimizer, MSPO integrates several strategies, including Sobol sequence initialization, nonlinear decreasing inertia weight, and a chaotic parameter to enhance global exploration ability and convergence steadiness. Tests using the CEC 2022 benchmark functions reveal that MSPO surpasses leading algorithms regarding optimization precision and convergence rate. An ablation study was conducted on three variants of MSPO through CEC 2022 to further validate the effectiveness of each key strategy. Furthermore, MSPO is combined with the ResNet18 model and applied to the BreaKHis breast cancer image dataset. Results indicate that the model optimized by MSPO notably surpasses both the non-optimized version and other alternative optimization algorithms using four assessment indicators: accuracy, precision, recall, and F1-score. This validates the promising application potential and practical significance of MSPO in medical image classification tasks.

Keywords

Computer applications to medicine. Medical informatics, R858-859.7, Original Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold
Related to Research communities
Cancer Research