Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Informati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Information Systems and Informatics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/1e...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/y3...
Other literature type . 2023
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Review of Fuzzy Cognitive Maps Extensions and Learning

مراجعة ملحقات الخرائط المعرفية الضبابية والتعلم
Authors: Jiya Adama Jiya; Obunadike N Georgina; Atomatofa Emmanuel O.;

A Review of Fuzzy Cognitive Maps Extensions and Learning

Abstract

Fuzzy Cognitive Maps (FCM) is a soft computing technique whose vertices and edges are fuzzy values with an inference mechanism for solving modelling problems; it has been used in modelling complex systems like industrial and process control. The concept was first introduced in 1986, with an initial learning algorithm in 1996; several works have been published on FCM methodology, learnings and applications. Fuzzy cognitive maps continue to evolve both in theory, learning algorithms and application. Many theories like intuitionistic theory, hesitancy theory, grey system theory, wavelet theory, etc., are integrated with the conventional FCM. These extensions have improved Fuzzy cognitive Maps to handle problems of uncertainty, incomplete information, hesitancy, dynamic systems and probabilistic fuzzy events. They also strengthen fuzzy cognitive Maps’ modelling power for application in almost any domain. However, the compilation of the development in methodology and adaptation of FCM are either old or omitted some of the recent advances or focused on specific applications of FCM in some areas. This paper reports extension, learning and applications of FCM from the initial conventional FCM to recent extensions and some of the important features of those extensions and learning.

Keywords

Artificial intelligence, Mathematical analysis, Inference, Artificial Intelligence, Machine learning, QA1-939, Fuzzy Cognitive Maps, FOS: Mathematics, evolutionary learning, learning algorithms, Probabilistic logic, Domain (mathematical analysis), Theoretical Framework of Cognitive Informatics and Computational Intelligence, Fuzzy cognitive map, QA75.5-76.95, Application of Fuzzy Cognitive Maps in Modeling, Computer science, Process (computing), Fuzzy logic, fuzzy cognitive maps, Operating system, Fuzzy control system, Electronic computers. Computer science, Computer Science, Physical Sciences, Fuzzy classification, fuzzy cognitive map learning,, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold