Downloads provided by UsageCounts
arXiv: 2004.00094
Bidding and acceptance strategies have a substantial impact on the outcome of negotiations in scenarios with linear additive and nonlinear utility functions. Over the years, it has become clear that there is no single best strategy for all negotiation settings, yet many fixed strategies are still being developed. We envision a shift in the strategy design question from: What is a good strategy?, towards: What could be a good strategy? For this purpose, we developed a method leveraging automated algorithm configuration to find the best strategies for a specific set of negotiation settings. By empowering automated negotiating agents using automated algorithm configuration, we obtain a flexible negotiation agent that can be configured automatically for a rich space of opponents and negotiation scenarios. To critically assess our approach, the agent was tested in an ANAC-like bilateral automated negotiation tournament setting against past competitors. We show that our automatically configured agent outperforms all other agents, with a 5.1% increase in negotiation payoff compared to the next-best agent. We note that without our agent in the tournament, the top-ranked agent wins by a margin of only 0.01%.
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Interactive Intelligence
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Machine Learning (cs.LG), Negotiation Strategy, Artificial Intelligence (cs.AI), Automated Algorithm Configuration, Automated Negotiation, Computer Science - Multiagent Systems, Multiagent Systems (cs.MA)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Machine Learning (cs.LG), Negotiation Strategy, Artificial Intelligence (cs.AI), Automated Algorithm Configuration, Automated Negotiation, Computer Science - Multiagent Systems, Multiagent Systems (cs.MA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 10 | |
| downloads | 6 |

Views provided by UsageCounts
Downloads provided by UsageCounts