
Pancreatic neuroendocrine neoplasms (pNENs) are rare and heterogeneous tumors arising from neuroendocrine cells, representing approximately 10 % of all Gastro-Entero-Pancreatic neuroendocrine neoplasms. While most pNENs are sporadic, a subset is associated with genetic syndromes such as multiple endocrine neoplasia type 1 (MEN1) or von Hippel-Lindau disease (VHL). pNENs are further classified into functioning and non-functioning tumors, with distinct clinical behaviors, prognoses, and treatment approaches. This review explores genetic and environmental biomarkers that influence the risk, prognosis, and therapeutic responses in pNENs. The epidemiology of pNENs reveals an increasing incidence, primarily due to advancements in imaging techniques. Genetic factors play a pivotal role, with germline mutations in MEN1, VHL, and other genes contributing to familial pNENs. Somatic mutations, including alterations in the mTOR pathway and DNA maintenance genes such as DAXX and ATRX, are critical in sporadic pNENs. These mutations, along with epigenetic dysregulation and transcriptomic alterations, underpin the diverse clinical and molecular phenotypes of pNENs. Emerging evidence suggests that epigenetic changes, including DNA methylation profiles, can stratify pNEN subtypes and predict disease progression. Environmental and lifestyle factors, such as diabetes, smoking, and chronic pancreatitis, have been linked to an increased risk of sporadic pNENs. While the association between these factors and tumor progression is still under investigation, their potential role in influencing therapeutic outcomes warrants further study. Advances in systemic therapies, including somatostatin analogs, mTOR inhibitors, and tyrosine kinase inhibitors, have improved disease management. Biomarkers such as Ki-67, somatostatin receptor expression, and O6-methylguanine-DNA methyltransferase (MGMT) status are being evaluated for their predictive value. Novel approaches, including the use of circulating biomarkers (NETest, circulating tumor cells, and ctDNA) and polygenic risk scores, offer promising avenues for non-invasive diagnosis and monitoring. Despite these advancements, challenges remain, including the need for large, well-annotated datasets and validated biomarkers. Future research should integrate multi-omics approaches and leverage liquid biopsy technologies to refine diagnostic, prognostic, and therapeutic strategies. Interdisciplinary collaborations and global consortia are crucial for overcoming current limitations and translating research findings into clinical practice. These insights hold promise for improving prevention, early detection, and tailored treatments, ultimately enhancing patient outcomes.
PNET, PanNEN, Radioligand, NEN, Prognosis, Epigenesis, Genetic, Pancreatic Neoplasms, NET, Neuroendocrine Tumors, Genetic, Risk factors, Risk Factors, Neuroendocrine neoplasms, Mutation, Biomarkers, Tumor, Humans, Genetic Predisposition to Disease, Somatostatin
PNET, PanNEN, Radioligand, NEN, Prognosis, Epigenesis, Genetic, Pancreatic Neoplasms, NET, Neuroendocrine Tumors, Genetic, Risk factors, Risk Factors, Neuroendocrine neoplasms, Mutation, Biomarkers, Tumor, Humans, Genetic Predisposition to Disease, Somatostatin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
