
handle: 20.500.12876/20136 , 20.500.12876/68508
Design by contract specification languages help programmers write their intentions for a piece of code in a formal mathematical language. Most programming languages do not have built-in syntax for such specifications, so many design by contract languages place specifications in comments. The Java Modeling Language (JML) is one such specification language for Java that uses comments to specify contracts. However, starting with version 5, Java has introduced annotations, a syntactical structure to place metadata in various places in the code. This thesis proposes an initial design to writing JML contracts in the Java 5 annotation syntax and evaluates several criteria in the areas of specification languages and Java language design: whether these annotations are expressive enough to take advantage of annotation simplicity and tool support, and whether the annotation syntax is expressive enough to support handling a large specification language such as JML.
Computer Sciences, Software Engineering, Computer science, JML annotation specification, 004
Computer Sciences, Software Engineering, Computer science, JML annotation specification, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
