
Mobile edge computing (MEC) can significantly enhance device computing power by offloading service workflows from mobile device computing to mobile network edges. Thus how to implement an efficient computation offloading mechanism is a major challenge nowadays. For the purpose of addressing this problem, this paper aims to reduce application completion time and energy consumption of user device (UD) in offloading. The algorithm proposed formalizes the computation offloading problem into an energy and time optimization problem according to user experience, and obtains the optimal cost strategy on the basis of deep Q-learning (DQN). The simulation results show that comparing to the known local execution algorithm and random offloading algorithm, the computation offloading algorithm proposed in this paper can significantly reduce the energy consumption and shorten the completion time of service workflow execution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
