Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method

Authors: Amr Khaled Khamees; Almoataz Y. Abdelaziz; Makram Roshdy Eskaros; Hassan Haes Alhelou; Mahmoud Abdallah Attia;

Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method

Abstract

Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems.

Keywords

mayfly algorithm, multi-objective optimization, stochastic optimal power flow, Weibull distribution, optimal power flow, Electrical engineering. Electronics. Nuclear engineering, Aquila optimizer, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
gold