Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACU Research Bank
Article . 2022
Data sources: ACU Research Bank
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Muscle Protein Synthesis after Protein Administration in Critical Illness

Authors: Lee-anne S. Chapple; Imre W. K. Kouw; Matthew J. Summers; Luke M. Weinel; Samuel Gluck; Eamon Raith; Peter Slobodian; +4 Authors

Muscle Protein Synthesis after Protein Administration in Critical Illness

Abstract

Rationale: Dietary protein may attenuate the muscle atrophy experienced by patients in the ICU, yet protein handling is poorly understood. Objectives: To quantify protein digestion and amino acid absorption and fasting and postprandial myofibrillar protein synthesis during critical illness. Methods: Fifteen mechanically ventilated adults (12 male; aged 50 ± 17 yr; body mass index, 27 ± 5 kg⋅m-2) and 10 healthy control subjects (6 male; 54 ± 23 yr; body mass index, 27 ± 4 kg⋅m-2) received a primed intravenous L-[ring-2H5]-phenylalanine, L-[3,5-2H2]-tyrosine, and L-[1-13C]-leucine infusion over 9.5 hours and a duodenal bolus of intrinsically labeled (L-[1-13C]-phenylalanine and L-[1-13C]-leucine) intact milk protein (20 g protein) over 60 minutes. Arterial blood and muscle samples were taken at baseline (fasting) and for 6 hours following duodenal protein administration. Data are mean ± SD, analyzed with two-way repeated measures ANOVA and independent samples t test. Measurements and Main Results: Fasting myofibrillar protein synthesis rates did not differ between ICU patients and healthy control subjects (0.023 ± 0.013% h-1 vs. 0.034 ± 0.016% h-1; P = 0.077). After protein administration, plasma amino acid availability did not differ between groups (ICU patients, 54.2 ± 9.1%, vs. healthy control subjects, 61.8 ± 13.1%; P = 0.12), and myofibrillar protein synthesis rates increased in both groups (0.028 ± 0.010% h-1 vs. 0.043 ± 0.018% h-1; main time effect P = 0.046; P-interaction = 0.584) with lower rates in ICU patients than in healthy control subjects (main group effect P = 0.001). Incorporation of protein-derived phenylalanine into myofibrillar protein was ∼60% lower in ICU patients (0.007 ± 0.007 mol percent excess vs. 0.017 ± 0.009 mol percent excess; P = 0.007). Conclusions: The capacity for critically ill patients to use ingested protein for muscle protein synthesis is markedly blunted despite relatively normal protein digestion and amino acid absorption.

Keywords

Adult, Male, Critical Illness, Phenylalanine, 610, Muscle Proteins, 612, Leucine, Critical Illness/therapy, Leucine/metabolism, critical illness, enteral nutrition, Humans, Amino Acids, Milk Proteins/metabolism, Muscle, Skeletal, Muscle Proteins/metabolism, Aged, amino acids, Dietary Proteins/metabolism, Middle Aged, Milk Proteins, anabolic resistance, Tyrosine, Female, Dietary Proteins, Tyrosine/metabolism, protein, muscle protein synthesis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 1%
Top 10%
Top 1%
Green