Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Symmetric Private Polynomial Computation From Lagrange Encoding

Authors: Jinbao Zhu; Qifa Yan; Xiaohu Tang; Songze Li;

Symmetric Private Polynomial Computation From Lagrange Encoding

Abstract

The problem of $X$-secure $T$-colluding symmetric Private Polynomial Computation (PPC) from coded storage system with $B$ Byzantine and $U$ unresponsive servers is studied in this paper. Specifically, a dataset consisting of $M$ files is stored across $N$ distributed servers according to $(N,K+X)$ Maximum Distance Separable (MDS) codes such that any group of up to $X$ colluding servers can not learn anything about the data files. A user wishes to privately evaluate one out of a set of candidate polynomial functions over the $M$ files from the system, while guaranteeing that any $T$ colluding servers can not learn anything about the identity of the desired function and the user can not learn anything about the $M$ data files more than the desired polynomial function evaluations, in the presence of $B$ Byzantine servers that can send arbitrary responses maliciously to confuse the user and $U$ unresponsive servers that will not respond any information at all. A novel symmetric PPC scheme using Lagrange encoding is proposed. This scheme achieves a PPC rate of $1-\frac{G(K+X-1)+T+2B}{N-U}$ with secrecy rate $\frac{G(K+X-1)+T}{N-(G(K+X-1)+T+2B+U)}$ and finite field size $N+\max\{K,N-(G(K+X-1)+T+2B+U)\}$, where $G$ is the maximum degree over all the candidate polynomial functions. Moreover, to further measure the efficiency of PPC schemes, upload cost, query complexity, server computation complexity and decoding complexity required to implement the scheme are analyzed. Remarkably, the PPC setup studied in this paper generalizes all the previous MDS coded PPC setups and the degraded schemes strictly outperform the best known schemes in terms of (asymptotical) PPC rate, which is the main concern of the PPC schemes.

Country
China (People's Republic of)
Related Organizations
Keywords

FOS: Computer and information sciences, Computation complexity, Decoding, Computer Science - Information Theory, Information Theory (cs.IT), Servers, Lagrange encoding, Codes, Costs, Private computation, Computational complexity, Systematics, Encoding, Symmetric private polynomial computation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
bronze