Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the ACM on Management of Data
Article . 2025 . Peer-reviewed
License: ACM Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In-context Clustering-based Entity Resolution with Large Language Models: A Design Space Exploration

Authors: Jiajie Fu; Haitong Tang; Arijit Khan; Sharad Mehrotra; Xiangyu Ke; Yunjun Gao;

In-context Clustering-based Entity Resolution with Large Language Models: A Design Space Exploration

Abstract

Entity Resolution (ER) is a fundamental data quality improvement task that identifies and links records referring to the same real-world entity. Traditional ER approaches often rely on pairwise comparisons, which can be costly regarding both time and monetary resources, especially when large datasets are involved. Recently, Large Language Models (LLMs) have demonstrated promising results in ER tasks. Still, existing methods typically focus on pairwise matching, missing the potential of LLMs to directly perform clustering in a more cost-effective and scalable manner. In this paper, we propose a novel in-context clustering approach for ER, where LLMs are used to cluster records directly, reducing both time complexity and monetary costs. We systematically investigate the design space for in-context clustering, analyzing the impact of factors such as set size, diversity, variation, and ordering of records on clustering performance. Based on these insights, we develop LLM-CER (LLM-powered Clustering-based ER) that obtains high-quality ER results while minimizing LLM API calls. Our approach addresses key challenges, including efficient cluster merging and LLM's hallucination, providing a scalable and effective solution for ER. Extensive experiments on nine real-world datasets demonstrate that our method significantly improves result quality, achieving up to 150% higher accuracy, 10% increase in the FP-measure, and reducing API calls by up to 5X, while maintaining a comparable monetary cost to the most cost-effective baseline.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities