
Abstract.We study reals with infinitely many incompressible prefixes. Call A ∈ 2ωKolmogorov random if . where C denotes plain Kolmogorov complexity. This property was suggested by Loveland and studied by Martin-Löf. Schnorr and Solovay. We prove that 2-random reals are Kolmogorov random. Together with the converse—proved by Nies. Stephan and Terwijn [11]—this provides a natural characterization of 2-randomness in terms of plain complexity. We finish with a related characterization of 2-randomness.
Kolmogorov random sequence, Applications of computability and recursion theory, Kolmogorov complexity, Martin-Löf random sequence, Kolmogorov randomness, Algorithmic information theory (Kolmogorov complexity, etc.)
Kolmogorov random sequence, Applications of computability and recursion theory, Kolmogorov complexity, Martin-Löf random sequence, Kolmogorov randomness, Algorithmic information theory (Kolmogorov complexity, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
