Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ase562...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Perfce: Performance Debugging on Databases with Chaos Engineering-Enhanced Causality Analysis

Authors: Ji, Zhenlan; Ma, Pingchuan; Wang, Shuai;

Perfce: Performance Debugging on Databases with Chaos Engineering-Enhanced Causality Analysis

Abstract

Debugging performance anomalies in real-world databases is challenging. Causal inference techniques enable qualitative and quantitative root cause analysis of performance downgrade. Nevertheless, causality analysis is practically challenging, particularly due to limited observability. Recently, chaos engineering has been applied to test complex real-world software systems. Chaos frameworks like Chaos Mesh mutate a set of chaos variables to inject catastrophic events (e.g., network slowdowns) to "stress" software systems. The systems under chaos stress are then tested using methods like differential testing to check if they retain their normal functionality (e.g., SQL query output is always correct under stress). Despite its ubiquity in the industry, chaos engineering is now employed mostly to aid software testing rather for performance debugging. This paper identifies novel usage of chaos engineering on helping developers diagnose performance anomalies in databases. Our presented framework, PERFCE, comprises an offline phase and an online phase. The offline phase learns the statistical models of the target database system, whilst the online phase diagnoses the root cause of monitored performance anomalies on the fly. During the offline phase, PERFCE leverages both passive observations and proactive chaos experiments to constitute accurate causal graphs and structural equation models (SEMs). When observing performance anomalies during the online phase, causal graphs enable qualitative root cause identification (e.g., high CPU usage) and SEMs enable quantitative counterfactual analysis (e.g., determining "when CPU usage is reduced to 45\%, performance returns to normal"). PERFCE notably outperforms prior works on common synthetic datasets, and our evaluation on real-world databases, MySQL and TiDB, shows that PERFCE is highly accurate and moderately expensive.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green