
With the ability of customization for an application domain, extensible processors have been used more and more in embedded systems in recent years. Extensible processors customize an application domain by executing parts of application code in hardware instead of software. Determining parts of application code as custom instruction generally requires subgraph enumeration and subgraph selection. Both subgraph enumeration problem and subgraph selection problem are computationally difficult problems. Most of previous works focus on sequential algorithms for these two problems. In this paper, we present a parallel implementation of a latest subgraph enumeration algorithm based on a computer cluster. A standard ant colony optimization algorithm (ACO), a modified version of ACO with local optimum search and a parallel ACO algorithm are also proposed to solve the subgraph selection problem in this work. Experimental results show that the parallel algorithms outperform the sequential algorithms in terms of runtime or (and) quality of results. In addition, we have formally proved the upper bound on the number of feasible solutions in subgraph selection problem with or without the overlapping constraint.
[INFO.INFO-AR] Computer Science [cs]/Hardware Architecture [cs.AR], Parallel algorithms, Custom instruction, Subgraph enumeration algorithm, Extensible processors, Subgraph selection algorithm
[INFO.INFO-AR] Computer Science [cs]/Hardware Architecture [cs.AR], Parallel algorithms, Custom instruction, Subgraph enumeration algorithm, Extensible processors, Subgraph selection algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
