Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith Research On...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/bh...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/90...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems

خوارزمية ما وراء معنوية جديدة لاختيار الميزات والوظائف غير المقيدة والمشاكل الهندسية
Authors: El-Sayed M. El-Kenawy; Seyedali Mirjalili; Fawaz Alassery; Yu-Dong Zhang; Marwa Metwally Eid; Shady Y. El-Mashad; Bandar Abdullah Aloyaydi; +2 Authors

Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems

Abstract

Cet article propose un algorithme d'optimisation hybride Sine Cosine avec algorithme d'optimisation modifié des baleines (SCMWOA). L'objectif est de tirer parti des forces de WOA et SCA pour résoudre des problèmes avec des variables de décision continues et binaires. L'algorithme SCMWOA est d'abord testé sur dix-neuf ensembles de données du référentiel UCI Machine Learning avec différents nombres d'attributs, d'instances et de classes pour la sélection des fonctionnalités. Il est ensuite utilisé pour résoudre plusieurs fonctions de référence et des études de cas d'ingénierie classiques. L'algorithme SCMWOA est appliqué pour résoudre des problèmes d'optimisation sous contrainte. Les deux exemples testés sont la conception de la poutre soudée et la conception du ressort de traction/compression. Les résultats soulignent que l'algorithme SCMWOA surpasse plusieurs algorithmes d'optimisation comparative et fournit une meilleure précision par rapport à d'autres algorithmes. Les tests d'analyse statistique, y compris l'analyse unidirectionnelle de la variance (ANOVA) et la somme des rangs de Wilcoxon, confirment que l'algorithme SCMWOA fonctionne mieux.

Este artículo propone un algoritmo de optimización híbrido sinusoidal con algoritmo de optimización de ballenas modificado (SCMWOA). El objetivo es aprovechar las fortalezas de WOA y SCA para resolver problemas con variables de decisión continua y binaria. El algoritmo SCMWOA se prueba por primera vez en diecinueve conjuntos de datos del repositorio de aprendizaje automático UCI con diferentes números de atributos, instancias y clases para la selección de características. Luego se emplea para resolver varias funciones de referencia y estudios de casos de ingeniería clásica. El algoritmo SCMWOA se aplica para resolver problemas de optimización restringida. Los dos ejemplos probados son el diseño de la viga soldada y el diseño del resorte de tensión/compresión. Los resultados enfatizan que el algoritmo SCMWOA supera a varios algoritmos de optimización comparativos y proporciona una mejor precisión en comparación con otros algoritmos. Las pruebas de análisis estadístico, incluido el análisis unidireccional de la varianza (ANOVA) y la suma de rangos de Wilcoxon, confirman que el algoritmo SCMWOA funciona mejor.

This paper proposes a Sine Cosine hybrid optimization algorithm with Modified Whale Optimization Algorithm (SCMWOA). The goal is to leverage the strengths of WOA and SCA to solve problems with continuous and binary decision variables. The SCMWOA algorithm is first tested on nineteen datasets from the UCI Machine Learning Repository with different numbers of attributes, instances, and classes for feature selection. It is then employed to solve several benchmark functions and classical engineering case studies. The SCMWOA algorithm is applied for solving constrained optimization problems. The two tested examples are the welded beam design and the tension/compression spring design. The results emphasize that the SCMWOA algorithm outperforms several comparative optimization algorithms and provides better accuracy compared to other algorithms. The statistical analysis tests, including one-way analysis of variance (ANOVA) and Wilcoxon's rank-sum, confirm that the SCMWOA algorithm performs better.

تقترح هذه الورقة خوارزمية تحسين جيب التمام الهجين مع خوارزمية تحسين الحيتان المعدلة (SCMWOA). الهدف هو الاستفادة من نقاط قوة WOA و SCA لحل المشكلات باستخدام متغيرات القرار المستمرة والثنائية. يتم اختبار خوارزمية SCMWOA لأول مرة على تسعة عشر مجموعة بيانات من مستودع التعلم الآلي UCI مع أعداد مختلفة من السمات والمثيلات والفئات لاختيار الميزات. ثم يتم استخدامه لحل العديد من الوظائف المعيارية ودراسات الحالة الهندسية الكلاسيكية. يتم تطبيق خوارزمية SCMWOA لحل مشكلات التحسين المقيدة. المثالان اللذان تم اختبارهما هما تصميم العارضة الملحومة وتصميم نابض الشد/الانضغاط. تؤكد النتائج أن خوارزمية SCMWOA تتفوق على العديد من خوارزميات التحسين المقارن وتوفر دقة أفضل مقارنة بالخوارزميات الأخرى. تؤكد اختبارات التحليل الإحصائي، بما في ذلك تحليل التباين أحادي الاتجاه (ANOVA) ومجموع تصنيف ويلكوكسون، أن خوارزمية SCMWOA تؤدي أداءً أفضل.

Keywords

Technology, Artificial intelligence, sine cosine algorithm, modified whale optimization algorithm, Ocean Engineering, Leverage (statistics), Engineering, Artificial Intelligence, Hydrodynamic Optimization, FOS: Mathematics, Swarm Intelligence Optimization Algorithms, Constraint Handling, Hydrodynamic Analysis of Ship Behavior and Performance, Science & Technology, Geography, Multi-Objective Optimization, Sorting, Optimization Applications, Mathematical optimization, Computer science, TK1-9971, Algorithm, machine learning, Computational Theory and Mathematics, Particle Swarm Optimization, Computer Science, Physical Sciences, Feature selection, Information and computing sciences, Telecommunications, Electrical & Electronic, Electrical engineering. Electronics. Nuclear engineering, Benchmark (surveying), optimization, Multiobjective Optimization in Evolutionary Algorithms, Mathematics, Geodesy, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 1%
Green
gold