Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Output-Optimal Massively Parallel Algorithms for Similarity Joins

Authors: Hu, Xiao CSE; Yi, Ke; Tao, Yufei;

Output-Optimal Massively Parallel Algorithms for Similarity Joins

Abstract

Parallel join algorithms have received much attention in recent years due to the rapid development of massively parallel systems such as MapReduce and Spark. In the database theory community, most efforts have been focused on studying worst-case optimal algorithms. However, the worst-case optimality of these join algorithms relies on the hard instances having very large output sizes. In the case of a two-relation join, the hard instance is just a Cartesian product, with an output size that is quadratic in the input size. In practice, however, the output size is usually much smaller. One recent parallel join algorithm by Beame et al. has achieved output-optimality (i.e., its cost is optimal in terms of both the input size and the output size), but their algorithm only works for a 2-relation equi-join and has some imperfections. In this article, we first improve their algorithm to true optimality. Then we design output-optimal algorithms for a large class of similarity joins. Finally, we present a lower bound, which essentially eliminates the possibility of having output-optimal algorithms for any join on more than two relations.

Related Organizations
Keywords

Parallel computation, Output-sensitive algorithms, Similarity joins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!