Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cando-...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data Driven Urban Building Energy Modeling with Machine Learning in Satom CH

Authors: Montazeri, Ahad; Kämpf, Jérôme H.; Mutani, Guglielmina;

Data Driven Urban Building Energy Modeling with Machine Learning in Satom CH

Abstract

This article delves into the integration of district heating systems into urban planning for sustainable development in regions with moderate to cold climates. The study introduces the Data-driven Urban Energy modeling framework, which aims to bridge the gap between conventional engineering-based energy simulation models and emerging data-driven machine learning (ML) models. By doing so, it provides accurate and comprehensive insights into urban energy demand (ED) patterns. The methodology involves evaluating engineering and ML model's generalization power, revealing its ability to predict energy demand accurately at both building and urban scales. Machine learning algorithms, including LightGBM (LGBM) and Random Forest (RF) regression, are employed to fine-tune the energy-use model for future energy demand predictions. The results demonstrate the model's exceptional accuracy and suitability for diverse urban scenarios. Incorporating a more straightforward approach like Multiple Linear Regression (MLR) into the methodology also highlights its capability to predict energy demand in less complex research scenarios and offer valuable insights for effective urban energy planning. Overall, this article emphasizes the significance of datadriven approaches and machine learning techniques in optimizing energy demand, promoting sustainable urban development, and guiding informed decision-making for energy-efficient cities. The findings have implications for urban planners, policymakers, and energy analysts seeking to enhance energy efficiency and contribute to a greener and more sustainable future for urban communities.

Keywords

Urban building energy modeling; Data-driven models; Machine learning; Place-based approach; Geographic Information System GIS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green