Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of Biofuel Supply Chains under Uncertainty with Multiobjective Stochastic Programming Models and Decomposition Algorithm

Authors: Fengqi You;

Design of Biofuel Supply Chains under Uncertainty with Multiobjective Stochastic Programming Models and Decomposition Algorithm

Abstract

Abstract In this paper, a bi-criterion, multi-period, stochastic mixed-integer linear programming model is proposed to address the optimal design and planning of hydrocarbon biorefinery supply chains under supply and demand uncertainties. The model accounts for diverse conversion technologies, feedstock seasonality and fluctuation, geographical diversity, biomass degradation, demand variation, government incentives and risk management. The objective is simultaneous minimization of the expected annualized cost and the financial risk which is measured by conditional value-at-risk and downside risk. The model determines the optimal network design, technology selection, capital investment, production planning, and logistics management decisions. Multi-cut L-shaped decomposition approach is implemented to circumvent the computational burden of solving large scale problems. The proposed modeling framework and algorithm are illustrated through two case studies of hydrocarbon biorefinery supply chain for the State of Illinois.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!