
arXiv: 1905.02088
Static analyses aspire to explore all possible executions in order to achieve soundness. Yet, in practice, they fail to capture common dynamic behavior. Enhancing static analyses with dynamic information is a common pattern, with tools such as Tamiflex. Past approaches, however, miss significant portions of dynamic behavior, due to native code, unsupported features (e.g., invokedynamic or lambdas in Java), and more. We present techniques that substantially counteract the unsoundness of a static analysis, with virtually no intrusion to the analysis logic. Our approach is reified in the HeapDL toolchain and consists in taking whole-heap snapshots during program execution, that are further enriched to capture significant aspects of dynamic behavior, regardless of the causes of such behavior. The snapshots are then used as extra inputs to the static analysis. The approach exhibits both portability and significantly increased coverage. Heap information under one set of dynamic inputs allows a static analysis to cover many more behaviors under other inputs. A HeapDL-enhanced static analysis of the DaCapo benchmarks computes 99.5% (median) of the call-graph edges of unseen dynamic executions (vs. 76.9% for the Tamiflex tool).
FOS: Computer and information sciences, Software engineering, Computer Science - Programming Languages, Programming languages (Electronic computers), Computer programs -- Testing, Programming Languages (cs.PL)
FOS: Computer and information sciences, Software engineering, Computer Science - Programming Languages, Programming languages (Electronic computers), Computer programs -- Testing, Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
