
SynopsisThis note treats some questions about analytic continuation in several variables. The first theorem in effect determines the envelops of holomorphy of certain domains in ℂn. The second main result is a continuity theorem: If a bounded holomorphic function f on a convex domain ∆ in ℂn has boundary values that are continuous on the complement (in b∆) of a set of the form int∏ (b∆∩∏) where ∏ is a real hyperplane in ℂn that misses ∆, then f is continuous on . In addition, we obtain what may be regarded as a local version of the theorem in our earlier paper concerning the one-dimensional extension property. Our methods depend on Hartogs' theorem (n ≧ 3) and directly on the BochnerMartinelli formula (n = 2).
boundary value of holomorphic function, envelopes of holomorphy, Boundary behavior of holomorphic functions of several complex variables, Continuation of analytic objects in several complex variables, Envelopes of holomorphy
boundary value of holomorphic function, envelopes of holomorphy, Boundary behavior of holomorphic functions of several complex variables, Continuation of analytic objects in several complex variables, Envelopes of holomorphy
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
