Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Methods and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Methods and Programs in Biomedicine
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images

Authors: Naceur, Mostefa Ben; Saouli, Rachida; Akil, Mohamed; Kachouri, Rostom;

Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images

Abstract

Nowadays, getting an efficient Brain Tumor Segmentation in Multi-Sequence MR images as soon as possible, gives an early clinical diagnosis, treatment and follow-up. The aim of this study is to develop a new deep learning model for the segmentation of brain tumors. The proposed models are used to segment the brain tumors of Glioblastomas (with both high and low grade). Glioblastomas have four properties: different sizes, shapes, contrasts, in addition, Glioblastomas appear anywhere in the brain.In this paper, we propose three end-to-end Incremental Deep Convolutional Neural Networks models for fully automatic Brain Tumor Segmentation. Our proposed models are different from the other CNNs-based models that follow the technique of trial and error process which does not use any guided approach to get the suitable hyper-parameters. Moreover, we adopt the technique of Ensemble Learning to design a more efficient model. For solving the problem of training CNNs model, we propose a new training strategy which takes into account the most influencing hyper-parameters by bounding and setting a roof to these hyper-parameters to accelerate the training.Our experiment results reported on BRATS-2017 dataset. The proposed deep learning models achieve the state-of-the-art performance without any post-processing operations. Indeed, our models achieve in average 0.88 Dice score over the complete region. Moreover, the efficient design with the advantage of GPU implementation, allows our three deep learning models to achieve brain segmentation results in average 20.87 s.The proposed deep learning models are effective for the segmentation of brain tumors and allow to obtain high accurate results. Moreover, the proposed models could help the physician experts to reduce the time of diagnostic.

Keywords

Fully automatic, [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, [INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE], [INFO.INFO-IM] Computer Science [cs]/Medical Imaging, Pattern Recognition, Automated, Machine Learning, [INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV], Image Processing, Computer-Assisted, Training, Humans, Diagnosis, Computer-Assisted, Brain tumor segmentation, Brain Neoplasms, Hyper-parameters, Brain, Deep learning, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], Magnetic Resonance Imaging, Convolutional neural networks, Neural Networks, Computer, Glioblastoma, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    200
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
200
Top 1%
Top 1%
Top 1%
Green
bronze