
doi: 10.14529/mmp160402
Summary: In the current paper, we study a Petrov-Galerkin method for a Cauchy problem for an operator-differential equation with a monotone operator in a separable Hilbert space. The existence and the uniqueness of a strong solution of the Cauchy problem are proved. New asymptotic estimates for the convergence rate of approximate solutions are obtained in uniform topology. The minimal requirements to the operators of the equation were demanded, which guaranteed the convergence of the approximate solutions. There were no assumptions of the structure of the operators. Therefore, the method, specified in this paper, can be applied to a wide class of the parabolic equations as well as to the integral-differential equations. The initial boundary value problem for nonlinear parabolic equations of the fourth order on space variables was considered as the application.
Cauchy problem, УДК 517.6, Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, оператор ортогонального проектирования, orthogonal projection, CAUCHY PROBLEM,OPERATOR-DIFFERENTIAL EQUATION,PETROV GALERKIN METHOD,ORTHOGONAL PROJECTION,CONVERGENCE RATE,ЗАДАЧА КОШИ,ДИФФЕРЕНЦИАЛЬНО-ОПЕРАТОРНОЕ УРАВНЕНИЕ,МЕТОД ПЕТРОВА ГАЛЕРКИНА,ОПЕРАТОР ОРТОГОНАЛЬНОГО ПРОЕКТИРОВАНИЯ,СКОРОСТЬ СХОДИМОСТИ, УДК 517.9, operator-differential equation, Petrov-Galerkin method, дифференциально-операторное уравнение, convergence rate, задача Коши, onvergence rate, Numerical solutions to abstract evolution equations, метод Петрова - Галеркина, Petrov - Galerkin method, Stability and convergence of numerical methods for ordinary differential equations, скорость сходимости
Cauchy problem, УДК 517.6, Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, оператор ортогонального проектирования, orthogonal projection, CAUCHY PROBLEM,OPERATOR-DIFFERENTIAL EQUATION,PETROV GALERKIN METHOD,ORTHOGONAL PROJECTION,CONVERGENCE RATE,ЗАДАЧА КОШИ,ДИФФЕРЕНЦИАЛЬНО-ОПЕРАТОРНОЕ УРАВНЕНИЕ,МЕТОД ПЕТРОВА ГАЛЕРКИНА,ОПЕРАТОР ОРТОГОНАЛЬНОГО ПРОЕКТИРОВАНИЯ,СКОРОСТЬ СХОДИМОСТИ, УДК 517.9, operator-differential equation, Petrov-Galerkin method, дифференциально-операторное уравнение, convergence rate, задача Коши, onvergence rate, Numerical solutions to abstract evolution equations, метод Петрова - Галеркина, Petrov - Galerkin method, Stability and convergence of numerical methods for ordinary differential equations, скорость сходимости
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
