
handle: 10037/2130
If a closed manifold M possesses two Riemannian metrics which have the same unparameterized geodesics and are not strictly proportional at each point, then the topological entropy of both geodesic flows is zero. This is the main result of the paper and it has many dynamical and topological corollaries. In particular, such a manifoldM should be finitely covered by the product of a rationally elliptic manifold and a torus.
VDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415
VDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
